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Abstract
With the exponential growth in data collection, multiple 
time-varying biomarkers are commonly encountered in 
clinical studies, along with a rich set of baseline covari-
ates. This paper is motivated by addressing a critical issue 
in the field of Alzheimer’s disease (AD) in which we aim 
to predict the time for AD conversion in people with mild 
cognitive impairment to inform prevention and early treat-
ment decisions. Conventional joint models of biomarker 
trajectory with time-to-event data rely heavily on model 
assumptions and may not be applicable when the number 
of covariates is large. This motivated us to consider a func-
tional ensemble survival tree framework to characterize the 
joint effects of both functional and baseline covariates in 
predicting disease progression. The proposed framework 
incorporates multivariate functional principal component 
analysis to characterize the changing patterns of multiple 
time-varying neurocognitive biomarker trajectories and 
then nest these features within an ensemble survival tree in 
predicting the progression of AD. We provide a fast imple-
mentation of the algorithm that accommodates personalized 
dynamic prediction that can be updated as new observations 
are gathered to reflect the patient’s latest prognosis. The al-
gorithm is empirically shown to perform well in simulation 
studies and is illustrated through the analysis of data from 
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1  |   INTRODUCTION

Alzheimer’s disease (AD) is one of the most prevalent diseases worldwide which leads to memory 
loss and dementia (LaFerla et al., 2007; Mattson, 2004; Rabin et al., 2019). Early detection is critical 
due to the lack of disease-modifying agents for patients diagnosed with AD. Mild cognitive impair-
ment (MCI) is defined as the transition stage between the clinically normal and dementia state where 
it involves memory and language loss that is considered greater than expected age-related changes 
(Mattson, 2004). As a result, MCI patients are typically enrolled as the target population for early 
prognosis and evaluation of therapies (Ewers et al., 2012). There is considerable interest in identifying 
biomarkers or combinations of covariates, so that the likelihood of predicting the neurodegenerative 
pathology due to Alzheimer’s disease for patients diagnosed with MCI can be greater. See Park et al. 
(2012); Ewers et al. (2012); Gomar et al. (2014) for example. Accurate prediction of disease progres-
sion to AD is thus important and critical to move the field forward (Kong et al., 2015; Risacher et al., 
2009).

Tremendous amounts of data are being collected in the hopes of finding significant factors that 
may be associated with AD progression. In the dataset that motivated this work, the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI), the focus was on the collection of longitudinal assessments, 
magnetic resonance imaging and positron emission tomography imaging measures, as well as other 
biomarkers from blood and cerebrospinal fluid (Cuingnet et al., 2011). Of those covariates collected 
in the cohort, many are time-varying. For example, the cognitive change in preclinical AD is a series 
of cognitive tests which are measured at each patient visits. The potential for discovery would be 
much greater in incorporating all available patient-specific covariates in predicting the progression of 
AD. However, the challenges may arise from (a) high dimensionality of the baseline covariates; (b) 
presence of multivariate time-varying biomarkers; (c) non-linear and complex relationship between 
the covariates and the time-to-event outcome. A natural question then is how to best utilize this infor-
mation to improve prediction performance to inform prevention and early treatment decisions.

Existing methods in the literature, such as the joint model, hinges on the pre-specified model 
assumptions for both the time-varying biomarker and the survival outcome (Rizopoulos, 2012). 
However, the nature of time-varying biomarkers may vary under different clinical settings, making it 
difficult to identify a suitable model. For illustration purposes, we present in Figure 1, the raw longi-
tudinal trajectories for two of the longitudinal cognitive measures for 50 randomly selected MCI pa-
tients in ADNI. We can see that both the Mini Mental State Examination (MMSE, left) and Functional 
Activities Questionnaire (FAQ, right) trajectories have changing patterns over time and are highly 
variable within and between patients. In addressing this concern, nonparametric methods such as 
splines or kernel smoothing, have been adopted in the literature for prediction using the denoised 
smoothed values of the biomarker trajectories (Welsh et al., 2002; Wu & Chiang, 2000). More re-
cently, functional approaches such as functional principal component analysis (FPCA), has become a 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
(http://adni.loni.usc.edu/). We provide implementation of 
our proposed method in an R package funest.
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popular alternative for modelling time-varying predictors due to its ability to use extracted features in 
addition to the denoised smoothed values which will likely improve prediction (Ramsay & Silverman, 
2004; Wang et al., 2016). Examples of utilizing functional data analysis in predicting the time-to-event 
outcome include Yan et al. (2017, 2018); Kong et al. (2018). However, all of the aforementioned meth-
ods focus on the dynamic prediction of time-to-event outcome with a single time-varying biomarker. 
As a result, Li and Luo (2019) recently proposed to use multiple longitudinal biomarkers in predicting 
the disease progression. However, their method was contingent on the proportional hazards model 
which may not be viable especially when the number of covariates is large. At the time of revision, 
we are aware of a recent article utilizing multiple time-varying biomarkers under a functional survival 
forest framework (Lin et al., 2020). However, their method did not consider the selection of an optimal 
estimator, which could lead to sub-optimal prediction performance.

In this article, we propose a unified strategy for dynamic prediction that does not depend on the 
model specification and can handle high-dimensional baseline and multivariate time-varying covari-
ates in the presence of right censoring. The proposed approach is entirely data-driven and can be 
stated in terms of three main steps. (1) First, extract features from the multivariate time-varying co-
variates such that the changing patterns can be summarized by a set of basis functions and the associ-
ated individualized functional scores. (2) Then, construct candidate estimators based on the extracted 
features and observed data. (3) Last, apply cross-validation to select the optimal estimator among all 
candidates in step 2. Specifically, we adopt tree-based methods in this paper where the possible can-
didate estimators in step 2 are generated by repeated binary recursive partitions (Ishwaran et al., 2008, 
2011). Tree-based methods facilitate a comprehensive modelling scheme and are appealing for their 
ability to handle high-dimensional covariates, facilitate complex and non-linear relationships between 
predictors and outcomes, and relax the proportional hazard assumption (Jiang, 2019; Taylor, 2011). 
Given the tree-based estimators in step 2, the optimal estimator in step 3 can be selected via cross-val-
idation by tuning the number of basis functions from step 1 and tree-based parameters from step 2.

The remainder of this paper is organized as follows. In Section 2, we define notation and describe 
the model setup. In particular, we give detailed discussion on the multivariate principal component 
analysis (MFPCA) for feature extraction from multiple time-varying covariates, and the construc-
tion of the functional ensemble survival tree for conducting individualized dynamic prediction. We 
investigate the finite sample performance in intensive simulation studies in Section 3, and provide 

F I G U R E  1   Longitudinal trajectories of Mini Mental State Examination (MMSE, left) and Functional Activities 
Questionnaire (FAQ, right) of 50 randomly selected Mild cognitive impairment patients in Alzheimer’s Disease 
Neuroimaging Initiative
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publicly available code in our R package funest (Xie et al., 2020). We illustrate the propose method in 
the ADNI dataset in Section 4, and conclude the paper with remarks and future research in Section 5.

2  |   NOTATION AND METHOD

2.1  |  Functional ensemble survival tree

Random survival forest (RSF) is an ensemble tree method that has been widely adopted for the analy-
sis of right-censored survival data. The goal of constructing the RSF is to train a model that learns 
from the available functional and baseline covariates in the cohort, such that the model can be used 
to make risk predictions for new patients conditioning on partially observed data. The focus of this 
subsection is on model construction and we elaborate on individualized dynamic prediction in Section 
2.2.

Typical RSF cannot take longitudinal covariates directly as inputs. To extend the survival tree on 
the basis of longitudinal covariates, we first characterize the changing patterns of the time-varying 
biomarkers via MFPCA. We start by setting up the functional framework for single time-varying 
biomarkers and then expand to the multivariate setting. We let Yi = (Yi,1, …, Yi,Q) be the observed 
time-varying biomarkers for individual i, i = 1, …, n. The qth time-varying biomarker is denoted 
by Yi,q = (Yi,q(ti,1), …, Yi,q(ti, Ri

))� where Ri reflects random and irregular individual-specific visits, 
q = 1, …, Q. We assume that the qth observed trajectory, ∀ q  ∈  {1, …, Q}, is recorded with error, 

where Zi,q(ti,r) denotes the denoised mean value of Yi,q(ti,r) for ti,r ∈ [0, �] and τ denotes the maximum 
follow-up time in the cohort. The error term is assumed to have E(�i,q,r) = 0 and var(�i,q,r) = �2

q
 (Yao 

et al., 2005).
Under the functional framework, we assume that Zi,q = {Zi,q(t), ∀ t ∈ [0, �]} are realizations of a 

stochastic process Zq(t) in a square integrable functional space with domain [0, τ]. The stochastic process 
is assumed to have mean function E[Zq(t)] = �q(t) and covariance operator Cq(t, s) = Cov(Zq(t), Zq(s)) 
for ∀ t, s  ∈  [0, τ]. Then by Mercer’s theorem (Mercer, 1909), 
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information criterion (AIC) or the total variance explained (TVE) (Wang et al., 2016). For estimation, 
given the observed data, we adopt the Principal Analysis by Conditional Estimation (PACE) algorithm 
for its well-known property of accommodating sparse longitudinal observations as is the case in our mo-
tivating study (Yao et al., 2005). Specifically, we use the PACE algorithm to facilitate the estimation of 
the discretized mean function �̂i,q = (�̂q(ti,1), …, �̂q(ti,Ri

))�, the Ri × Ri empirical covariance matrix Σ̂
q

i
,  

and the corresponding eigenvectors �̂
q

j
 and eigenvalues �̂

q

j
, j = 1, …, Mq, (Yao et al., 2005). Then the 

univariate FPC scores for the qth biomarker trajectory for ith individual can be estimated as 

j = 1, …, Mq, for q = 1 …, Q.
Next we combine the Q univariate time-varying biomarkers via MFPCA following Happ and 

Greven (2018). We let M =
∑Q

q=1
Mq and Λ̂ ∈ ℝ

n×M be an n × M matrix for which the ith row is 
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Q
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}. In the multivariate setting we aim to perform a matrix eigenanal-

ysis such that we can estimate the corresponding eigenvectors v̂m, from the empirical block matrix 
Ĝ =

1

n−1
Λ̂

T
Λ̂ ∈ ℝ

M×M, m = 1, …, M. Note that MFPCA indirectly accommodates the potential cor-
relations among multiple trajectories via correlation among the FPC scores by pooling all estimated 
eigenvectors from the univariate biomarkers in the block matrix Ĝ. The eigenvectors v̂m thus contain 
the information of correlations across different time-varying biomarkers. As a result, the multivariate 
eigenfunctions are estimated as 

where [̂vm]
q

k
 denotes the kth entry in the qth block of v̂m, q = 1, …, Q, m = 1, …, M. The corresponding 

individual-specific MFPC scores can thus be estimated as 

m = 1, …, M. Similar to the univariate setting, the optimal number of MFPCs, {D: D ≤ M}, can be 
chosen based on, for example, TVE or AIC.

The RSF can be easily constructed once the MFPCA scores have been estimated. Growing a single 
tree is well known to exhibit high variances in the predicted outcomes, combining a number of trees 
in forming a forest thus can substantially decrease the variability in prediction. Each tree within the 
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neity or between-node heterogeneity. The standard split criterion for survival trees is the log-rank sta-
tistic to compare the survival distributions at each node which has been widely used and implemented 
(Ishwaran et al., 2008, 2011). Other splitting criterion such as the maximally selected rank statistic has 
been recently developed for its well-known unbiased split variable selection property (Wright et al., 
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met. Lastly, the information from all trees is aggregated from the terminal nodes for an average risk 
prediction ensemble.

2.2  |  Individualized dynamic prediction

We let n denote the number of individuals in the training cohort and n + 1 be the new individual 
who is event free and has observation up to some time t∗, t∗ < 𝜏. For each single tree b, b = 1, …, B, 
prediction of the survival probability at t∗ + ▵t < 𝜏, is made by dropping the new individual n + 1’s 
observations down the tree as 

where Wn+1 is the baseline covariates for individual n + 1 of dimension P × 1. The MFPC scores �̂n+1 can 
be obtained by first estimating the univariate FPC scores from (4), 

j = 1, …, Mq, q  =  1,  …,  Q. We then pass these FPC scores to (6) to obtain the MFPCA scores 
�̂n+1 = (�̂n+1,1, …, �̂n+1,D)�. The final prediction from the forest is estimated by averaging over B trees, 

3  |   SIMULATION STUDY

We conduct intensive simulation studies to investigate the finite sample performance of our proposed 
method in this section. We aim to mimic the motivating application and simulate n = 400 individuals 
in each dataset, with nsim = 500 datasets. The individual-specific visit times {ti,r, r = 1, 2, …, 7} are 
generated from the Gaussian distribution centred at 0, 3, 6, 9, 12, 15, and 18 with standard deviation 
of 0.1 except the initial baseline visit which is fixed at 0.

We assume that the time-varying biomarkers are recorded with error, Yi,q(ti,r) = Zi,q(ti,r) + �i,r,q, 
where �i,r,q ∼ N(0, 1) and q = 1, 2, 3. We consider both the linear and non-linear longitudinal trajecto-
ries in a similar fashion as Li and Luo (2019). Specifically in the linear setting, we simulate 
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where [�2
1
, �2

2
, �2

3
] = [1, 1.5, 2], and [�12, �13, �23] = [−0.2, 0.1, −0.3].

The non-linear trajectories for each individual i is assumed to follow a piecewise model 

where the spline coefficients [c1, c2, c3] = [1.2, 0.7, 0.5], knots [k1, k2, k3] = [0, 6, 13], and truncated 
basis functions of time 

We assume a proportional hazards model in this simulation where the hazard function follows, 

where h0(t) = exp(−7), �q is set to be (0.1, −0.1, 0.2) for q = 1, 2, 3 respectively. We consider four 
different scenarios for the set of fixed covariates Wi = (Wi,1, …, Wi,P)�. In the first two scenarios we 
set ρ = 0.2 and 0.5 for P = 20, 100, respectively, to represent strong autoregressive dependence where 
Wi ∼ MVN(0, Σ(W)) with the (k, l)th component of Σ(W) define as, 

In the last two scenarios, we consider binary covariates with P(Wi,p = 1) = 0.5 similarly under ρ = 0.2 
and 0.5 for P = 20, 100. We set the associated coefficients �p = (−2.5, −0.5, −0.15, −0.15, −0.1) for 
p = 1, …, 5, so that high values of �1, …, �5 are associated with shorter times to the event, and �p = 0 
for p = 6, …, P. The elements of Wi with non-zero coefficients were chosen to give both weak and 
strong dependence within the set of important covariates accompanied with set of noise variables. With 
the setup above, we are then ready to simulate the survival time Ti, which can be generated from the in-
verse of the cumulative hazard function H−1

i
(u|�i; � , �), where �i is the observed individual-level data, 

� = (�1, …, �P), � = (�1, �2, �3), and u ∼ unif(0, 1) (Austin, 2012). We have simulated under the inde-
pendent censoring scheme, where the censoring time is set to follow a uniform distribution unif(0, Cm), 
and Cm is set such that the % of being censored by the end of the study is 30%.

Given the simulation settings for the time-varying/fixed covariates along with the survival times 
as the response variable, we now describe how the dynamic predictions are conducted in this simula-
tion study. In evaluating the model prediction performance, we adopted both the AUC for measuring 
model discrimination (Li et  al., 2015), and Brier score as a combined measure of discrimination 
and calibration (Schoop et al., 2008). To avoid overfitting, we employed a fivefold inner and outer 
cross-validation in a similar fashion as Wright et al. (2017). Specifically for the inner cross-validation, 
an optimal ensemble survival tree model was built and selected based on the best prediction perfor-
mance by tuning the parameters in each fold. For each fold in the outer cross-validation, the prediction 
accuracy measure is recorded dynamically for each time window (t∗, t∗ + ▵t] conditional on data 
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observed up to t∗, t∗ = 6, 9, forecasting t∗ + ▵t for ▵t = 3, 6. Note that for individuals in the testing 
set, their trajectories beyond t∗ need to be removed prior to their estimation of the MFPCs, much like 
what we would have in a real data setting.

Table 1 illustrates simulation results from the non-linear setting. Additional simulation results 
under the linear setting are provided within the Supplemental Material for interested readers. As 
shown in Table 1, the AUC outputted from the proposed method are in good agreement with the true 
AUC on average, confirming a satisfactory model discrimination. The Brier scores, on the other hand, 
are very close to zero on average, which confirms good model calibration. In addition, we see that the 
proposed model retains robust prediction performance when the signal-to-noise ratio (S:N) decreases 
from 5 : 15 to 5 : 95. It should be noted that the RSF does not delete or select any of the variables. All 
of the variables can influence the prediction, if that is indicated by the training data.

The proposed method has been implemented in our funest package (Xie et al., 2020) which uti-
lizes the well developed ranger (Wright & Ziegler, 2017) that wraps the implementation of random 
forest in C++. The computational speed of our package is outstanding, as it takes less than 30 s for 
growing and making dynamic predictions on the functional ensemble survival forest with ∼2500 trees 
on a desktop with i7-7700 CPU. In addition, the package naturally takes advantage of the multi-core 
processor when running in a larger scale computational environment which warrants an even more 
promising computational speed.

4  |   ALZHEIMER’S DISEASE NEUROIMAGING INITIATIVE

The data used in this section are obtained from the Alzheimer’s ADNI database†. We treat the conver-
sion from MCI to AD as the time-to-event outcome and focus on 302 patients who have been 

 †http://adni.loni.usc.edu/

T A B L E  1   Estimated mean AUC(t∗, t
∗ + ▵t) and Brier score(t∗, t

∗ + ▵t) under the non-linear setting via functional 
ensemble survival tree; n = 400, nsim = 500, S:N = signal-to-noise ratio

W
i

P S:N t∗ ∆t True AUC AUC BS

Normal 20 5:15 6 3 0.892 0.847 0.134

6 0.904 0.864 0.147

9 3 0.877 0.815 0.151

6 0.896 0.830 0.147

100 5:95 6 3 0.898 0.855 0.137

6 0.913 0.870 0.142

9 3 0.881 0.813 0.164

6 0.899 0.827 0.157

Binary 20 5:15 6 3 0.827 0.781 0.085

6 0.848 0.816 0.143

9 3 0.843 0.805 0.123

6 0.868 0.838 0.149

100 5:95 6 3 0.836 0.792 0.083

6 0.867 0.834 0.127

9 3 0.854 0.819 0.114

6 0.883 0.852 0.133
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diagnosed with MCI in ADNI-1. Out of those who were diagnosed with MCI, 137 of them progressed 
to AD before the end of the study. Patients were assessed at baseline, 6, 12, 18, 24, 30 and 36 months 
in ADNI-1 with additional annual follow-ups in ADNI-2 resulting in an average follow-up period of 
31.3 (sd = 12.2) months. The corresponding average number of visits recorded was 6.2 (sd = 2.0). 
Table 2 in the Supplemental Material shows the list of variables that we consider in this section. We 
focus on five time-varying neurocognitive markers as well as other baseline covariates that have been 
well studied in the Alzheimer’s literature (Gomar et al., 2014; LaFerla et al., 2007; Mattson, 2004). 
All time-varying markers have been re-scaled to have a variance equal to 1 in this analysis, ensuring 
that larger scales of marker variability do not dominate the MFPCA characterization in stage 1. 
Specifically, for each time-varying neurocognitive markers Yq, q = 1, …, 5, we estimate a weight as, 

Using these weights, the time-varying markers can then be re-scaled to w1∕2
q Yq, with a variance of 1 (Happ 

& Greven, 2018).
We compared the proposed model, which we refer to as the full model, with the Cox proportional 

hazards model (MFPCCox) (Li & Luo, 2019). There did not appear to be any extreme non-linearity or 
outliers in the Schoenfeld residuals plot for each of the baseline covariates, thus the proportional hazards 
assumption was deemed reasonable. To avoid overfitting, we employed a fivefold inner and 10-fold outer 
cross-validation in this analysis. For the five univariate expansions in MFPCA, we have selected the num-
ber of FPCs that can explain ≥95% of the univariate variance. We selected three MFPCs that explained 
88% of variation on average across the 10 training datasets, with the first MFPC explaining 67% of the 
total variation on average. Additionally, we compared the full model and MFPCCox with a baseline model 
(only includes baseline measures, including the baseline measures for the time-varying markers).

Figure 2 shows the average prediction accuracy recorded dynamically for each time window 
(t∗, t∗ + ▵t] conditional on data observed up to t∗, t∗ = 6, 12, 18, 24 (month), forecasting t∗ + ▵t for 
▵t = 6 month. It is apparent that the full model achieved a better AUC(t∗, t∗ + ▵t) and BS(t∗, t∗ + ▵t)  
dynamically over all time points, compared to the baseline model on average. This suggests that the 
inclusion of the extracted features of time-varying covariates indeed facilitates a better model discrim-
ination and calibration. The MFPCCox model, on the other hand, achieved similar prediction perfor-
mance compared with the full model. To further demonstrate the advantage of incorporating multiple 
time-varying markers, we have considered five reduced models. Each reduced models is constructed 
with all available baseline covariates, along with one of the five time-varying neurocognitive markers. 
The results of the corresponding AUC(t∗, t∗ + ▵t) and BS(t∗, t∗ + ▵t) for these reduced models are 
included in the Supplemental Material for interested readers.

We further illustrate the variable importance ranking via the variable permutation importance 
measure as shown in Figure 3. A variable is identified as important if it exerts a positive effect on the 
prediction performance. A greater value of permutation measure on a variable implies that the vari-
able is more important for the overall predictive accuracy; see Nembrini et al. (2018) for more details. 
As a result, we see from Figure 3 that the first principal component (PC1), on average, stands out 
with large permutation importance measure in relation to other variables. This finding suggests that 
the contribution of the time-varying covariates in predicting the progression of AD for those who are 
diagnosed as MCI is much greater relative to the fixed baseline covariates. Such finding is indeed in 
agreement with what we observe in Figure 2. In addition, note that the neurocognitive markers along 
with PACC (preclinical Alzheimer cognitive composite score) are top ranked in Figure 3, which con-
veys that the cognitive measures for MCI patients are the most predictive variables for their disease 

(10)wq = ( ∫
�

0

Ĉq(t, t)dt)−1 = ( ∫
�

0

v̂ar(Zq(t))dt)−1.
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progression to AD. This finding is in accordance with the literature, as cognitive composite scores are 
known to retain great discriminative ability of the disease status within patients (Donohue et al., 2014; 
Rabin et al., 2019; Weintraub et al., 2018).

F I G U R E  2   Comparison of dynamic prediction performances of the full, baseline and MFPCCox model averaged 
over cross-validations. AUC(t∗, t

∗ + 6) and BS(t∗, t
∗ + 6) conditional on data observed prior to t∗ = 6, 12, 18, 24 

(month) in forecasting t∗ + 6 under a sliding window framework [Colour figure can be viewed at wileyonlinelibrary.
com]
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F I G U R E  3   Variable permutation importance barplot averaged over cross-validations [Colour figure can be 
viewed at wileyonlinelibrary.com]
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Lastly, we demonstrate individualized dynamic prediction where we randomly set aside a single 
patient from the cohort. The model was trained on the remainder of the cohort leaving this single 
patient out, such that we are able to visualize the predicted future biomarker trajectory and risk 
conditional on partial profile. Figure 4 shows two of the five neurocognitive markers (i.e. ADAS-
COG13 and FAQ) that we have used in the model for ease of visualization. The vertical dashed line 
in Figure 4 represents the last time the biomarker has been recorded for the patient. From the first 
column of Figure 4, we can see that the predicted trajectories of the ADAS-COG13 and FAQ are 
in great harmony with the true values (blue and black asterisks, respectively). Correspondingly, the 
predicted AD-free probability for the patient is shown as a function of time in the second column 
where splines have been adopted to provide a smooth curve. The predicted low risk should be con-
sistent with what one would expect from the stability of neurocognitive marker measurements. A 
full set of neurocognitive markers and their associated predictions are provided in the Supplemental 
Material for interested readers. The R package funest can be readily adopted for conducting the 
analysis in this section. We also provide sample code through an online repository (https://github.
com/jj113/funest).

F I G U R E  4   Predicted trajectories of ADAS-COG13 and FAQ in the first column and predicted AD-free 
probability in the second column conditional on partially observed marker values prior to the vertical dashed line; 
vertical dashed line represents the last time the biomarker has been recorded for the patient [Colour figure can be 
viewed at wileyonlinelibrary.com]
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5  |   DISCUSSION

We have formulated the functional ensemble survival tree framework that facilitates individualized 
dynamic prediction for disease progression accommodating multiple time-varying biomarkers. The 
proposed framework is fully data-driven and therefore removes the burden of the need to impose 
model assumptions on both the time-varying trajectories and survival distribution. Specifically, we 
adopt MFPCA to characterize the changing pattern of the multivariate time-varying biomarkers which 
effectively captures the correlation among them. We then nest these extracted features into a non-
parametric ensemble survival tree which accommodates dynamic prediction under the presence of 
high dimensionality of baseline covariates. We have investigated the empirical performance of the 
proposed algorithm and have shown satisfactory model discrimination and calibration. We conducted 
individualized dynamic predictions and illustrate the utility of the proposed framework in the ADNI 
dataset. This could help physicians to predict the future course of the biomarker trajectories as well as 
the associated risk of AD which in turn, could facilitate identifying high risk individuals for preven-
tion trials and treatment interventions.

Under the two-stage framework, the functional scores from stage 1 are used as inputs to stage 2 in 
conducting the dynamic predictions, neglecting the estimation errors made in the first stage. A model 
check should be applied in stage 1 prior to carrying the scores over to stage 2, to prevent utilizing 
poorly estimated parameters. An ad hoc approach is to visualize the bias between the estimated indi-
vidualized trajectories and their observed true values. This has been done in the ADNI application, 
as shown in the first column of Figure 4. In addition, the asymptotic properties of the functional ap-
proach has been well derived in the literature, enabling the estimation of the uncertainty from stage 
1 (Happ & Greven, 2018; Yao et al., 2005). Alternative models may need to be fitted in stage 1 if the 
functional scores are associated with large uncertainty. In the prediction context, when comparing dif-
ferent models, the best model is the one with the smallest prediction error or, equivalently, the best fit 
(Houwelingen & Putter, 2011). Further simulation studies may facilitate the investigation of this issue.

In this paper, we have characterized the time-varying marker trajectories on a common time do-
main [0, τ] for all individuals. In the general survival context, individuals are constrained in hav-
ing different length of longitudinal trajectories (predictor domains) upon the occurrence of event or 
censoring. Thus, utilizing a common time domain for all individuals may not be optimal. Methods 
that can facilitate trajectory characterization, accommodating various predictor domains, are greatly 
needed if the between-subject variability in the width of the time domain varies substantially or when 
the time domain is informative. While some previous work have been done in this area when looking 
at the data retrospectively, no work has been done in the prediction context (Gellar et al., 2014; Johns 
et al., 2019). This will remain as part of our future work.

A limitation in all tree-based methods is the lack of interpretability. However, in analysing the 
ADNI dataset, we provided the variable permutation importance measure which identifies variables 
that are important contributors for the overall predictive accuracy. The comparison between baseline 
and full model also facilitates investigation of the added value of the time-varying covariates. Our 
findings from ADNI suggest that time-varying trajectories play a major role in predicting AD progres-
sion for those that are diagnosed with MCI. ADNI is an ongoing project that currently only contain 
sparse number of individuals who have their genetic profiles available. The model setup and the soft-
ware distributed in this article warrants further research incorporating a richer set of genetic markers.
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